
Journal of Sound and <ibration (2002) 254(2), 245}267
doi:10.1006/jsvi.2001.4093, available online at http://www.idealibrary.com on
STOCHASTIC AVERAGING OF STRONGLY NON-LINEAR
OSCILLATORS UNDER BOUNDED NOISE EXCITATION

Z. L. HUANG AND W. Q. ZHU

Department of Mechanics, Zhejiang ;niversity, Hangzhou 310027, People1s Republic of China.
E-mails: huangzhilong@yahoo.com; wqzhu@yahoo.com

AND

Y. Q. NI AND J. M. KO

Department of Civil and Structural Engineering, ¹he Hong Kong Polytechnic ;niversity,
Kowloon, Hong Kong. E-mails: ceyqni@polyu.edu.hk; cejmko@polyu.edu.hk

(Received 21 May 2001, and in ,nal form 16 August 2001)

A stochastic averaging method for strongly non-linear oscillators under external and/or
parametric excitation of bounded noise is proposed by using the so-called generalized
harmonics functions. The method is then applied to study the primary resonance of Du$ng
oscillator with hardening spring under external excitation of bounded noise. The stochastic
jump and its bifurcation of the system are observed and explained by using the stationary
probability density of amplitude and phase. Subsequently, the method is applied to study the
dynamical instability and parametric resonance of Du$ng oscillator with hardening spring
under parametric excitation of bounded noise. The primary unstable region is delineated by
evaluating the Lyapunov exponent of linearized system, and the response and jump of
non-linear system around the unstable region are examined by using the sample functions
and stationary probability density of amplitude and phase.

� 2001 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The response of strongly non-linear oscillators to Gaussian white noise or wide-band
random process has been extensively studied by using several techniques such as the
stochastic averaging and statistical linearization (see references [1}3] and the references
therein). Comparatively, the response of strongly non-linear oscillators to narrow-band
random excitation is more complicated and has been less studied. For example, stochastic
jump may occur in the Du$ng oscillator with hardening spring in the case of external
excitation of narrow-band random process and dynamical instability and parametric
resonance in the case of parametric excitation. Although the stochastic jump phenomenon
of Du$ng oscillator under narrow-band excitation has been studied by using several
techniques since Lyon et al. "rst observed it in 1961 [4], no one analytical technique can be
used to explain the phenomenon satisfactorily [5]. To the authors' knowledge, the
parametric resonance of Du$ng oscillator under narrow-band random excitation has not
been investigated.
Currently, there are two kinds of models for narrow-band random excitation. One is the

response of second order linear "lter to Gaussian white noise. The other is the so-called
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bounded noise. The latter is a harmonic function with constant amplitude and stochastic
frequency and phase. This model was "rst proposed by Stratonovich [6] and has been used
by several researchers in studying the stochastic stability of linear parametric systems [7}9]
and chaotic motion of Du$ng oscillator with negative linear sti!ness [10].
In the present paper, a stochastic averaging method for strongly non-linear oscillators

under external and/or parametric excitation of bounded noise is proposed. The method is
applied to study the response of Du$ng oscillator with hardening spring under external
and parametric excitation of bounded noise. The results obtained by using the stochastic
averaging method are veri"ed by using digital simulation. The behaviour of the response is
examined in detail.

2. THE STOCHASTIC AVERAGING METHOD

The stochastic averaging method for strongly non-linear oscillators subject to external
and/or parametric excitations of Gaussian white noise, wide-band random processes, and
combined Gaussian white noise and harmonic function, respectively, has been developed
(see references [1, 2, 11] and the references therein). Here the case of bounded noise
excitation is addressed. The equation of motion of the system studied is of the form

XG #g (X)"�f (X,XQ )#�h(X, XQ )� (t), (1)

where g represents a strongly non-linear restoring force, f represents linear and/or
non-linear damping, h denotes the amplitude of excitation, � is a small parameter, � (t) is
a bounded noise of the form

� (t)"cos(�t#�B(t)#�), (2)

where � and �� are constants representing centre frequency and strength of frequency
perturbation, respectively, B (t) is standard Wiener process and � is random phase
uniformly distributed in [0, 2�]. �(t) is a stationary random process in a wide sense with
spectral density

S(�)"
��

4�
��#��#��/4

(��!��!��/4)�#����
(3)

and auto correlation function

R(�)"
1

2
exp�!

��

2
�� �� cos��. (4)

The bandwidth of process �(�) depends mainly on parameter �. It is a narrow-band process
when � is small and a wide-band process when � is large.
Suppose that the non-linear conservative oscillator

xK#g(x)"0 (5)

has a family of periodic solutions in domain ; of phase plane (x, xR ). The periodic solution
can be expressed as

x (t)"a cos� (t)#b, (6)

xR (t)"!av(a, �) sin� (t), (7)
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where

� (t)"� (t)#�, (8)

v(a, �)"
d�
dt

"�
2[<(a#b)!<(a cos�#b)]

a� sin� �
. (9)

a and b are constants related by potential energy

<(x)"�
�

�

g (u) du (10)

and the total energy

H"�
�
xR �#<(x) (11)

is as follows:

<(a#b)"< (!a#b)"H, (12)

cos� (t) and sin�(t) are the so-called generalized harmonic functions [12]. Obviously, a,
v(a, �) and � are the amplitude, instantaneous frequency and phase, respectively, of the
oscillator, and (b, 0) is the equilibrium position in phase plane.
Expanding v�� into Fourier series

v��(a, �)"C
�
(a)#

�
�
���

C
�
(a) cos n� (13)

and then integrating equation (9) with respect to � yields

t"C
�
(a)�#

�
�
���

1

n
C

�
(a) sin n�. (14)

Letting �"2� leads to average period

¹ (a)"2�C
�
(a) (15)

and average frequency

�(a)"
1

C
�
(a)

(16)

of the oscillator.
Now consider the random vibration of system (1). Suppose that the solution is of the form

X(t)"A cos�(t)#B, (17)

XQ (t)"!Av (A, �) sin� (t), (18)

where

�(t)"�(t)#� (t), (19)

v(A, �)"
d�
dt

"�
2[<(A#B)!<(A cos �#B)]

A� sin��
(20)
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and A, B, �, �, �, v are all random processes. Di!erentiating equation (17) with respect to
t and equating the resultant to equation (18) yields

AQ (cos �#h)!�Q A sin �"0, (21)

where

h	 "
dB

dA
"

g(!A#B)#g (A#B)

g(!A#B)!g (A#B)
. (22)

Di!erentiating equation (18) with respect to t and then substituting the resultant into
equation (1) leads to

AQ �v (A, �) sin �#A




A
[v (A, �) sin�]�#��




�

[v(A, �) sin �]

"!�f (A cos �#B,!Av(A, �) sin�)!�h(A cos�#B,!Av(A, �) sin�)� (t). (23)

Solving equations (21) and (23), we obtain

dA

dt
"�F

�
(A, �, �t#�),

(24)

d�

dt
"�F

�
(A, �, �t#�),

where

�"�B(t)#�

F
�
"!

A

g (A#B)(1#h	 )
[ f (A cos�#B,!Av(A, �) sin�)#h (A cos �#B,

!Av (A, �) sin�) cos(�t#�)]v (A, �) sin�, (25)

F
�
"!

1

g (A#B)(1#h	 )
[ f (A cos�#B,!Av(A, �) sin�)#h (A cos �#B,

!Av (A, �) sin�) cos(�t#�)]v (A, �) (cos�#h	 ).

Since we are interested in narrow-band excitation and resonant case, it is assumed that
� is small and

�

�(A)
"

q

p
#��, (26)

where p and q are relatively prime positive small integers and � is a detuning parameter.
Then, from equations (14) and (26), we obtain

�t"
q

p
�#���!

q

p
�#�

�
�
���

1

n
C

�
(A) sin n�. (27)
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Introduce a new variable

�"���!

q

p
�#� (28)

then

�t#�"�#�, (29)

where

�"� (A, �)"
q

p
�#�

�
�
���

1

n
C

�
(A) sin n�. (30)

Regarding equation (28) as a transformation form � to �, equation (24) is transformed into
the following Ito( stochastic di!erential equations:

dA"�F
�
(A, �, �#� ) dt,

d�"��
�

�(A)
!

q

p�v (A, �)!
q

p
�F

�
(A, �, �#� )� dt#� dB(t). (31)

Note that when � is small, A and � are a slowly varying process while � is a rapidly varying
process. Averaging the right side of equation (31) with respect to �, we obtain the following
averaged Ito( equations:

dA"m
�
(A, � ) dt,

(32)
d�"m

�
(A, � ) dt#� dB(t),

where

m
�
(A, � )"�F

�
(A, �, �#� )�� ,

m
�
(A, �)"	�

�

�(A)
!

q

p�v(A, �)!
q

p
�F

�
(A, �, �#� )
�

. (33)

Thus, (A, �) is a two-dimensional di!usion process. Ito( equation (32) can be solved
numerically [13]. However, in most cases it is more convenient to solve the
Fokker}Planck}Kolmogorov (FPK) equation associated with Ito( equation (32) to obtain
the statistics of the response. The FPK equation for transition probability density
p"p (a, �, t � a

�
, �

�
) is of the form


p

t

"!




a

[m
�
(a, �)p]!




�

[m
�
(a, �)p]#

��

2


�p


��
(34)

with initial condition

p"�(a!a
�
)� (�!�

�
), t"0. (35)

The boundary condition with respect to � is periodic, i.e.,

p ������"p�� ,

(
p/
�)������"(
p/
�)�� . (36)
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One of the boundary conditions with respect to a is

p",nite at a"0. (37)

The other boundary condition with respect to a depends on the behavior of the non-linear
oscillator in equation (5). In the simplest case, where all solutions of conservative oscillator
(5) in whole phase plane (x, xR ) are periodic surrounding (b, 0), the other boundary condition
of FPK equation (34) with respect to a is

p,

p

a

P0, as aPR. (38)

FPK equation (34) with its initial and boundary conditions can be solved numerically by
using, e.g., the path integration method [14].

3. DUFFING OSCILLATOR SUBJECT TO EXTERNAL EXCITATION
OF BOUNDED NOISE

As the "rst application of the stochastic averaging method developed in the last section,
we study the response of Du$ng oscillator with hardening spring to external excitation of
bounded noise. The equation of motion of the system is of the form

XG #��X#�X�"!�XQ #E cos(�t#�B(t)#�), (39)

where � is the frequency of degenerated linear oscillator, � is the intensity of non-linearity,
� is the coe$cient of linear damping, and E is the amplitude of excitation. For the present
system, b"h	 "0,

<(X)"��X�/2#�X�/4,

v��(A, �)"[(��#3�A�/4)(1#�
�
cos 2�)]�	�"

�
�
���

C
��
(A) cos 2n�, (40)

�
�
"�A�/4(��#3�A�/4).

For system (39), we are interested in primary resonance, i.e., q"p"1,

�/� (A)"1#�. (41)

Let

�"��!�#�. (42)

Following the procedure given in equations (17)} (33), we obtain the following averaged Ito(
equations:

dA"m
�
(A, � ) dt,

(43)
d�"m

�
(A, � ) dt#� dB(t),



AVERAGING OF NON-LINEAR OSCILLATORS UNDER NOISE 251
where

m
�
"!�A(��#5�A�/8)/2(��#�A�)

#E sin �	v(A, �) sin� sin��#�
�
�
���

1

2n
C

��
(A) sin 2n��
��(��#�A�)

(44)

m
�
"[�C

�
(A)!1]v (A, �)��#E cos �	v(A, �) cos�

�cos��#�
�
�
���

1

2n
C

��
(A) sin 2n��
��A(��#�A�).

In the case of deterministic harmonic excitation, �"�"0 and equation (43) is reduced to
ordinary di!erential equations

da

dt
"m

�
(a, �),

(45)
d�
dt

"m
�
(a, �).

Solving equation (45) in the case of da/dt"0 and d�/dt"0 yields the stationary amplitude
response curve of Du$ng oscillator under harmonic excitation, as shown in Figure 1.
The FPK equation associated with Ito( equation (43) is of the form of equation (34) with

m
�
and m

�
de"ned by equation (44). For system (39), the initial and boundary conditions of
Figure 1. Amplitude response curve of Du$ng oscillator under external harmonic excitation, curve A: �"1)0,
�"0)3, �"0)1, E"0)15; curve B: �"1)0, �"0)3, �"0)1, E"0)20; curve C: �"1)0, �"0)2, �"0)1, E"0)20;
curve D: �"1)0, �"0)3, �"0)1, E"0)3; curve E: �"1)0, �"0)5, �"0)1, E"0)20.



Figure 2. Stationary probability density p(a, �) and sample functions of displacement of system (39), �"0)3,
�"0)1, �"1)0, �"1)2, E"0)2, ��"0)02. (a) p(a, �) by the stochastic averaging and path integration; (b) p(a, �)
from the digital simulation of equation (39); (c) sample function of displacement from digital simulation.
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the FPK equation are of the form of equations (35)} (38). Using the method of path
integration [14], we obtain the stationary joint probability density p (a, �) of amplitude and
phase. One such density is shown in Figure 2(a). To con"rm the result obtained by using the
stochastic averaging and path integration, a similar result obtained from digital simulation
is shown in Figure 2(b). It is seen that the two results are in excellent agreement.
The stationary joint probability density in Figure 2 is bimodal, which implies that the

system has two more probable motions. Based on our experience in the study of the
response of Du$ng oscillator with hardening spring to narrow-band excitation [5] and to
combined white noise and harmonic excitations [11], it is expected that stochastic jumps
may occur between the two more probable motions. The time history of displacement
shown in Figure 2(c) veri"es our inference. This fact further con"rms that the stochastic
jump is essentially the transition of the response from one more probable motion to another
or vice versa [5, 11].
A major di!erence between the stochastic and deterministic jumps of Du$ng oscillator

with hardening spring is that the latter occurs only at the two extremes of the frequency
interval of triple-valued amplitude solution while the former may happen at any frequency
Figure 3. Stationary probability density p(a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)2, E"0)2,
��"0)01: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (39).
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of the frequency interval. In fact, the stochastic jumps described in Figure 2 occur at
�"1)2, which is not one of the two extremes of the frequency interval (see curve B in Figure
1). In this case, the stochastic jump happens due to the stochastic perturbation of excitation
frequency. Thus, it is expected that the jump will disappear when the intensity of frequency
perturbation, ��, is small. This inference is veri"ed in Figure 3. On the other hand, it is
expected that jumps occur more often when �� is larger. It is shown in Figure 4.
Another major di!erence between the stochastic and deterministic jumps of Du$ng

oscillator with hardening spring is that the former happens forward and backward (see
Figure 2(c)) while the latter happens only in one direction, i.e., from larger amplitude to
smaller on at upper extreme of the frequency interval or from smaller amplitude to larger
one at lower extreme of the frequency interval.
As shown in reference [5, 11], whether stochastic jumps occur or not depends on the

parameters of the system and excitation, such as intensity of non-linearity, frequency ratio
�/� and amplitude of excitation. This phenomenon was called the bifurcation of stochastic
jump. For example, comparison of Figures 2, 5 and 6 shows that the stochastic jumps may
occur only when the excitation amplitude E takes the value in some subinterval of (0)15, 0)3)
Figure 4. Stationary probability density p(a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)2, E"0)2,
��"0)04: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (39).



Figure 5. Stationary probability density p (a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)2, E"0)15,
��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (39).
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provided that the other parameters are kept unchanged. Figures 7 and 8 indicate that the
stochastic jump would not occur if the central frequency of the excitation is far outside of
the frequency interval of the triple valued amplitude solution (see Figure 1). Comparison of
Figures 2, 9 and 10 shows that stochastic jumps may occur only when the intensity of
non-linearity, �, is in some subinterval of (0)25, 0)5) provided the other parameters are
unchanged.

4. DUFFING OSCILLATOR SUBJECT TO PARAMETRIC EXCITATION
OF BOUNDED NOISE

As the second application of the stochastic averaging method proposed in the present
paper, now we consider the stability and response of Du$ng oscillator under parametric
excitation of bounded noise. The equation of motion is of the form

XG #��X#�X�"!�XQ #EX cos(�t#�B(t)#�), (46)



Figure 6. Stationary probability density p(a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)2, E"0)3,
��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (39).
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where the notations are the same as those in system (39). One practical example of equation
(46) is the single-mode model of cables vibration in cable-stayed bridges caused by the
parametric excitation of the deck and/or towers in vortex shedding and bu!eting [15]. Note
that equation (40) holds in this case. However, for the present system, we are interested in
the primary parametric resonance, i.e., q"2, p"1,

�

� (A)
"2#�. (47)

Let

�"��!2�#�. (48)



Figure 7. Stationary probability density p(a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)1,
E"0)2, ��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (39).
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Following the procedure given in equations (17)} (33), we obtain the following averaged Ito(
equations for system (46):

dA"m
�
(A, � ) dt, (49)

d�"m
�
(A, � ) dt#� dB(t), (50)

where

m
�
"!�A(��#5�A�/8)/2(��#�A�)#EA sin�

�	v (A, �) sin 2� sin�2�#�
�
�
���

1

2n
C

��
(A) sin 2n��
��2(��#�A�),



Figure 8. Stationary probability density p(a, �) of system (39), �"0)3, �"0)1, �"1)0, �"1)3,
E"0)2, ��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of
equation (39).
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m
�
"[�C

�
(A)!2]v (A, �)��#E cos �	v (A, �) cos 2� cos�2�

(51)

#�
�
�
���

1

2n
C

��
(A) sin 2n��
��(��#�A�).

The instability of system (46) is "rstly examined by using its linearized equation. For
linearized system (�"0), Ito( equations (49) and (50) are reduced to

dA"m
��
(A, �) dt, (52)

d�"m
��
(A, �) dt#� dB(t), (53)



Figure 9. Stationary probability density p(a, �) of system (39), �"0)2, �"0)1, �"1)0, �"1)2, E"0)2,
��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (39).
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where

m
��

"!

1

2
�A#

EA

4�
sin�, (54)

m
��

"(�!2�)#
E

2�
cos�. (55)

Let

�"ln A. (56)

The Ito( equation for � is obtained from equation (52) by using Ito( di!erential rule

d�"�!
1

2
�#

E

4�
sin�� dt. (57)



Figure 10. Stationary probability density p (a, �) of system (39), �"0)5, �"0)1, �"1)0, �"1)2, E"0)2,
��"0)02: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (39).

260 Z. L. HUANG E¹ A¸.
The Lyapunov exponent of the linearized system is de"ned as

�"lim
���

1

2t
ln�X� (t)#

1

��
XQ �(t)�, (58)

which, making use of equations (17) and (18), becomes

�"lim
���

1

t
ln�A(t)"lim

���

1

t
� (t)� . (59)

The Lyapunov exponent is a measure of the average exponential growth rate of the
amplitude process A(t) for large value of t and is a deterministic number with probability
one (w.p.1) for the system given by equation (52) or (57). If Lyapunov exponent is negative,
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the trivial solution of system (46) will be stable w.p.1. If the Lyapunov exponent is positive,
then the trivial solution will be unstable w.p.1.
In order to calculate �, we integrate both sides of equation (57) to obtain

� (t)!� (0)"!

1

2
�t#

E

4�
#

E

4� �
�

�

sin�(t) dt. (60)

Using equation (59), the Lyupunov exponent can be rewritten as

�"!

1

2
�#

E

4�
lim
���

1

t �
�

�

sin� (t) dt. (61)

The random process � (t) given by equation (53) can be shown to be ergodic. In this case, we
can write

lim
���

1

t �
�

�

sin�(t) dt"E[sin �] w.p.1, (62)

where E[)] denotes the expectation operator. Thus, w.p.1

�"!

1

2
�#

E

4�
E[sin �]. (63)

To evaluate E[sin �], note that � (t) is a one-dimensional di!usion process governed by
Ito( equation (53). The stationary probability density p(�) can be obtained from solving the
following reduced FPK equation associated with equation (53):

��
d�p

d��
!2

d

d� ��(�!2�)#
E

2�
cos ��p�"0. (64)

The solution to equation (64) satisfying the periodic condition is

p(�)"C exp�
2

�� �(�!2�)�#

E

2�
sin ���

��
����

�
exp�

!2

�� �(�!2�)�#

E

2�
sin ��� d�, (65)

where C is a normalizing constant. Finally, the Lyapunov exponent is

�"!

1

2
�#

E

4� �
��

�

sin �p (�) d�. (66)

Letting �"0 yields the boundary of the main unstable region of system (46) in plane (E, �
�
),

where �
�
"2�/�.

Some numerical results are shown in Figure 11. It is seen that the stochastic perturbation
of excitation frequency in general reduces the unstable region. However, at higher level of
excitation amplitude, large frequency perturbation may widen the unstable region.



Figure 11. Primary unstable region of system (46). �"1, �"0, �"0)02, �
�
"2�/� . **, by letting � in

equation (66) vanish � �, from digital simulation.
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Now let us examine the response of system (46) around the unstable region. In the case of
harmonic excitation, �"�"0, Ito( stochastic di!erential equation (49) and (50) are
reduced to ordinary di!erential equations

da

dt
"m

�
(a, �), (67)

d�
dt

"m
�
(a, �). (68)

Letting da/dt"0, d�/dt"0 in equations (67) and (68), we obtain the stationary amplitude
response curve of Du$ng oscillator under harmonic parametric excitation

�
�(��#5�a�/8)

	v (a, �) sin 2� sin�2�#�
�
�
���

1

2n
C

��
(a) sin 2n��
��

�

(69)

#�
(�C

�
(a)!2)v(a, �)��(��#�a�)

	v(a, �) cos 2� cos�2�#�
�
�
���

1

2n
C

��
(a) sin 2n��
��

�
"E�.

One such curve is shown in Figure 12. For comparison, another response curve obtained
by using the multi-scale method is also shown in Figure 12. The later curve is governed by
equation [16]

a�"

4

3� ���
�

2�
�
!���G�E�!�����. (70)



Figure 12. Amplitude response curve of Du$ng oscillator under parametric harmonic excitation, �"1,
�"0)3, E"0)2, �"0)09. 1, by the stochastic averaging method; 2, by the multi-scale method; �, from the digital
simulation.
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The two curves are in quite good agreement except that the stochastic averaging
method predicts more high-level stable amplitude response. The result from digital
simulation indicates that the actual amplitude response curve is somewhere between
the two curves given by the stochastic averaging method and multi-scale method. In
unstable region, the non-linearity in sti!ness limits the divergence of the amplitude due
to instability and there is only one non-zero stable amplitude. In a frequency interval on
the right-hand side of unstable region, equations (69) and (70) have three solutions,
among them two are stable and the other is unstable. So, jumps may occur as shown
in Figure 12.
In the case of bounded noise excitation, the stationary response of system (46) is depicted

by using stationary joint probability density of amplitude and phase, which can be obtained
from solving the reduced FPK equation associated with Ito( equations (49) and (50) by using
the method of path integration [14]. In unstable region, the trivial solution of system
(46) is unstable and there is only one non-zero more probable motion as shown in
Figure 13 by the unimodal stationary probability density of amplitude and phase. If
the system is initially located around equilibrium position, the response will diverge
toward the more probable non-zero motion, see Figure 14. In the frequency interval of
triple-valued amplitude solution, there are two more probable motions: one with non-zero
amplitude and one with zero amplitude. It is observed that the probable motion with
zero amplitude has much stronger attraction so that the "nal stationary state of the
system is at equilibrium position. If the system is initially located at the other probable
motion with non-zero amplitude, it will decay and approach the equilibrium position
without back jump (see Figure 15(a)). This is because the zero amplitude probable motion
has larger attraction domain and the amplitude of excitation is proportional to
displacement. The transient period depends on the central frequency � and the intensity
of frequency perturbation, ��. As shown in Figure 15(a)}15(d), the larger � or �� is, the
sooner the transition is.



Figure 13. Stationary probability density p(a, �) of system (46), �"0)3, �"0)09, �"1)0, �"2)0, E"0)2,
��"0)01: (a) by the stochastic averaging and path integration; (b) from the digital simulation of equation (46).

Figure 14. Sample function of displacement of system (46), �"0)3, �"0)09, �"1)0, �"2)04, E"0)2,
��"0)01, x

�
"0)1, xR

�
"0)0.
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Figure 15. Sample function of displacement of system (46), �"0)3, �"0)09, �"1)0, E"0)2: (a) �"2)1,
��"0)01; (b) �"2)2, ��"0)01; (c) �"2)3, ��"0)01; (d) �"2)1, ��"0)05.
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5. CONCLUSION

In the present paper a stochastic averaging procedure for strongly non-linear oscillators
subject to external and/or parametric excitation of bounded noise has been developed. By
using the stochastic averaging method, the primary resonance of Du$ng oscillator with
hardening spring under external excitation of bounded noise has been studied. The
stochastic jump and its bifurcation of the Du$ng oscillator have been brie#y examined by
using the stationary joint probability density of amplitude and phase. Two major
di!erences between the deterministic and stochastic jumps have been pointed out and
explained. The primary parametric resonance of Du$ng oscillator with hardening spring



Figure 15. Continued.

266 Z. L. HUANG E¹ A¸.
under parametric excitation of bounded noise has also been examined by using the
stochastic averaging method. The unstable region of the trivial solution of the oscillator has
been delineated by evaluating the Lyapunov exponent of the linearized system. It has been
observed that in the unstable region the stationary state of the system is a random vibration
with non-zero amplitude while in the frequency interval of triple-valued amplitude solution,
the system approaches equilibrium position without back jump, independent of the initial
condition. The reason for this behaviour has been explained.
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